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NOTE 

A Direct Numerical Solution to a 
One-Dimensional Helmholtz Equation 

In many physical problems it is necessary to solve the differential equation 

Yem + f(x) Y = g(x) (1) 

in some domain X given two boundary conditions. If g(x) is given in simple 
functions, a solution is readily obtained. If g(x) is given, however, only as data at 
discrete points, xi , j = 0( 1) n + 1, then it may be necessary to apply a numerical 
technique. There are numerous techniques available. However, in this special case, 
it is possible to construct the analytical solution to the difference equations when 
f(x) is a constant, a commonly encountered case. 

Let us replace (1) by the difference analog 

Yi+1 - 2Yj + Y&l+ @X2).fii = g, 9 (2) 

where y,, = a; yn+l = b; dx = (x,+~ - x&/(n + 1); f is independent of x, and 
gj is known. The problem is to find yi , j = l(l)n, which satisfy the stated bound- 
ary conditions. In matrix form (2) can be written 

AY=G. (3) 

A is symmetric, tridiagonal and cyclic; its diagonal element, aii , is 
-2 + fm2 = B, and the off-diagonal elements are unity. If A-l can be found, 
then the solution to the problem is 

Y = A-IG. (4) 

Define det (A) = 1 A 1 = D, . An elementary induction proof demonstrates that 

Dn = D0L.d - 8-2 , (5) 

where D, = 1, D, = p. The subscript on D denotes the order of A, or, physically, 
the number of unknowns, yi . Let us denote an element of A as aij and an element 
of A-l as aij . 

THEOREM. Since A-l is symmetric, 

ajj = (-l)i+i Di-,Dn-JD,, if i<j (6) 
and D, # 0. 
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The theorem may be proven by using (5) and taking the special cases i = j and 
i # j and showing, after some manipulation, that, if we define 

n 
cij = 1 &U~j ) 

Z=l 

then 
C& = I, cij = 0; if i f j. 

To solve (2) numerically, it is only necessary to construct the solution 

(7) 

(8) 

Yj = i 4&z (9) 
Z=l 

after defining Dj , j = O(l)n. The values uil , Eq. (6), may or may not be stored, 
as desired. In any event only half of them need be computed since A-l is symmetric. 
Note, the elements of A need never be stored since they are not needed for the 
solution. The use of (5), (6), and (9) to construct the solution, yj , is quite straight- 
forward. To accelerate the computation, it should be observed that (9) may be 
written 

wj = c C-1)’ &-,a , 1=1 

zi = i C-1)’ Dn-zgz , (10) 
z=j+1 

JJ~ = (-I)‘[Dn-jWj + Dj-lZj]/Dn s 

The first two sums, wj and zj , can be calculated recursively which greatly reduces 
the operational count for constructing the solution. No attempt has been made to 
calculate operational counts for this technique but its simplicity and directness 
commends it over many well-known numerical approaches for solving this 
particular two-point boundary value problem. 

A reviewer kindly disclosed the work by Parker in Lowan [l] which gives the 
roots of D, as 

/3k = 2 cos -!z- n+l’ k = l(l)n. (11) 

If /3 = Bk , D, = 0, A is singular, and there is no unique solution to (3). However, 
(11) represents all the roots of D, and thus, if / /3 1 > 2, we are confident that A is 
not singular and a solution may be found to (3). If 1 B 1 < 2, we can always choose 
dx such that /I f flK ; however, for large n, this may still lead to computational 
difficulties, since the file become dense in the small domain [-2,2]. 

The above scheme was used in a physical problem concerned with wave motion 
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in a meteorological application. Two equations like (1) from a set of 4 were solved 
with excellent results hundreds of times during the evolution of a simulated atmos- 
pheric disturbance. As a test example for this paper, a numerical example was 
chosen with f = fG; g = x3; and Y(O) = 1; y(l) = Y,+~ = 0 for 
1O-2 < 01~ < 102; 1 < n < 104. The results were compared with the analytical 
solution. For negative a2, the actual error decreases rapidly with order 10-2n and 
no difficulty was noticed since 1 fl 1 > 2. For positive cy2, (1) becomes pathological 
as o( increases. Even under these conditions, the actual error decreases rapidly with 
increasing n. Figure 1 shows the approximate distribution of the actual error as a 
function of OT and IZ. For large CL, the true solution oscillates numerous times in the 
inverval [0, I] with amplitude 2. For small n, (10) gives large errors; however, as 
n increases (10) gives excellent agreement with the true solution. 
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FIG. 1. Approximate error distribution as a function of 01 and n for f = +a*. True solution 

ranges from -2 to +2. The dots indicate data points for constructing the figure. 
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